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ASSUMED KNOWLEDGE

•	 Introductory plane geometry involving points and lines, parallel lines and transversals, 

angle sums of triangles and quadrilaterals, and general angle-chasing.

•	 Introduction to logical arguments in geometry written as a sequence of steps, each 

justified by a reason.

•	 Informal experience with translations, reflections and rotations, and with the 

symmetries associated with them.

•	 Familiarity with ruler-and-compasses constructions and Pythagoras' theorem. 

MOTIVATION

Two geometric figures may resemble each other in some ways, but differ in others. For 

example, all the angles of the square and the rectangle below are right angles, and they 

have the same area, but their side lengths are different.

4cm

4cm

2cm

8cm

On the other hand, the two figures below are exactly the same in all respects apart from 

their position and orientation – we can pick up one of them and place it so that it fits 

exactly on top of the other. Such figures are called congruent.

3cm

4cm

5cm

4cm

5cm

3cm
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Knowing that two figures are congruent is important. For example, if we measure or 

calculate the unmarked side length of the diagram on the left above, then the matching 

length is the same in the diagram on the right above. (Pythagoras’ theorem gives us the 

answer 2 5cm for this length.) This very simple idea of matching lengths, matching angles, 

and matching areas becomes the means by which we can prove many geometric results.

A polygon can always be divided up into triangles, so that arguments about the 

congruence of polygons can almost always be reduced to arguments about congruent 

triangles. Most of our discussion therefore concerns congruent triangles. We shall develop 

the four standard tests used to check that two triangles are congruent. It is also true that 

figures involving curves can be congruent, such as circles of the same radius.

A good way to think about congruence is to ask, ‘How much information do I need to 

give someone about a figure if they are going to draw it?’ For example, surveyors go 

to a lot of trouble taking careful measurements of a landscape. They must know that 

everything important about that landscape can be calculated from the measurements 

that they have taken. In an analogous way, a certain minimum amount of information is 

needed to draw a particular triangle. We will develop the congruence tests as a solution to 

this question.

A great deal of mathematics depends on finding and exploiting symmetries. This is 

particularly true in geometry, where the elementary figures that we study —like squares, 

rectangles, circles – exhibit obvious reflection and rotation symmetries. Argument 

based on direct appeals to symmetry, however, is notoriously difficult to construct and 

to evaluate, and the ancient Greek mathematicians, most famously Euclid, introduced 

argument based on congruence as a replacement. The resulting geometric proofs, using 

mostly only congruent triangles, are clear and straightforward in their logic.

Justifying the congruence tests is no easy matter – the logical problems inherent in them 

were only sorted out at the end of the nineteenth century, by David Hilbert in particular. 

We will take the first three tests as axioms of our geometry, and will be content to 

demonstrate their reasonableness using ruler-and compasses constructions. 
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CONTENT

CONGRUENCE OF PLANE FIGURES

If we take the five of spades from each of two identical decks of cards, they look exactly 

the same. We can move one card and place it on top of the other one so that the pictures 

on the two cards coincide exactly, as shown below.

Two objects like this are called congruent. The word ‘congruent’ comes from Latin and 

means ‘in agreement’ or ‘in harmony’. 

Definition: Two plane figures are called congruent if one figure can be moved so that it 

fits exactly on top of the other figure.

If two figures are congruent, such a movement can always be done by a sequence 

of translations, rotations and reflections – reflect the first figure in any axis if it has the 

opposite parity to the second, then translate any point of the first figure to the matching 

point of the second figure, then rotate the first figure until it fits exactly on top of the 

second. Thus congruent figures can be defined in an alternative way that specifies the 

allowed transformations:

‘Two plane figures are called congruent if 

one can be moved by a sequence of translations,  

rotations and reflections so that it fits exactly  

on top of the other figure.’

The example above with the cards involved translations  

and rotations. In the diagram to the right, the two footprints  

are congruent because one can be reflected onto the other.

MATCHING UP THE PARTS OF CONGRUENT FIGURES

When two figures are congruent, we can match every part of one figure with the 

corresponding part of the other figure. For example, the two figures below are congruent.

Some of the matchings of points with points, intervals with intervals, and angles with 

angles are:

	 A  A	 AB  AB	 BAD  BAD

axis of reflection
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Matching intervals have the same length, and matching angles have the same size.  

Also the matching regions ABCD and ABCD have the same area.

A

B C

D D  

BC

A

Congruent figures

•	 Two plane figures are called congruent if one figure can be moved so that it fits  

exactly on top of the other figure.

•	 This movement can always be effected by a sequence of translations, rotations  

and reflections.

•	 Congruent figures have exactly the same shape and size, each part of one figure can 

be matched with a part of the other figure, and

-- matching angles have the same size,

-- matching intervals have the same length,

-- matching regions have the same area.

CONGRUENT TRIANGLES

When geometric figures are made up entirely of intervals, rather than curves, arguments 

about congruence can usually be reduced to arguments about congruent triangles. This is 

one reason why so much attention is given to congruent triangles.

Here are two congruent triangles. The triangle PQR on the right has been formed by a 

translation of the triangle ABC on the left.

A B

C

47° 29°

104°

P Q

R

47° 29°

104°

The vertices and sides of triangle ABC are matched by the congruence with the vertices 

and sides of triangle PQR as follows:

	 A  P	 B  Q	 C  R 

	 BC  QR	 CA  RP	 AB  PQ

All this can be expressed extremely concisely by using the symbol  for ‘is congruent to’, 

and by observing the convention that the two triangles are named with the vertices in 

matching order:

	 ABC  PQR 
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Congruence statements

When we write a congruence statement, we always write the vertices of the two 

congruent triangles so that matched vertices and sides can be read off in the natural way. 

For example, the statement ABC  PQR means that:

	 AB = PQ, BC = QR, CA = RP,	 and	 A = P, B = Q, C =R.

THE FOUR STANDARD CONGRUENCE TESTS

There are four standard congruence tests for two triangles to be congruent. These notes 

will introduce and discuss them one by one, but they, and their standard initials, are 

summarised here at the start to indicate the structure of the following discussion:

The four standard congruence tests for triangles

Two triangles are congruent if:

SSS: the three sides of one triangle are respectively equal to the three sides of the 	other 

triangle, or

SAS: two sides and the included angle of one triangle are respectively equal to two 	

sides and the included angle of the other triangle, or

AAS: two angles and one side of one triangle are respectively equal to two angles 	and the 

matching side of the other triangle, or

RHS: the hypotenuse and one side of one right-angled triangle are respectively equal to 

the hypotenuse and one side of the other right-angled triangle.

Each congruence test will be justified by finding out what is a minimal amount of 

information – in terms of side lengths and angle sizes – needed to construct a triangle that 

is unique up to congruence, meaning that any two such triangles are congruent.

The SSS congruence test

Suppose first that we are asked to construct a triangle ABC in which 

	 AB = 12cm	 and	 AC = 5cm

There are infinitely many ways to do this, because the two sides can remain joined at A, but 

flap around. Three such triangles are shown below, and they are clearly not congruent.
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This shows that just knowing that two pairs of sides are equal is not enough information 

to establish congruence.

A B

C
5cm

12cm A B

C

5cm

12cm A B

C

5cm

12cm

Constructing a triangle with three given sides

When all three sides of a triangle are given, however, there is no longer any freedom 

of movement, and only one such triangle can be constructed (up to congruence). To 

demonstrate this, suppose that we are asked to construct a triangle ABC with three given 

sides lengths:

	 AB = 12cm	 BC = 10cm	 CA = 5cm 

In the module, Constructions we have seen that we can carry out this construction using 

ruler and compasses, as in the diagram below.

A B

C

C

5cm

12cm

10cm

This construction has yielded two triangles with the given measurements. However, these 

two triangles, are congruent. This is because if we reflect the whole diagram in the line 

AB, then each circle falls exactly on itself, so the reflection of the intersection point C must 

be the other intersection point C.

This establishes that it is reasonable to take the SSS congruence test as an axiom  

of geometry.

SSS congruence test

•	 If the three sides of one triangle are respectively equal to the three sides of another, 

then the two triangles are congruent. 

•	 If we are given the lengths of the three sides of a triangle, then only one such triangle 

can be constructed (up to congruence).

The initials SSS stand for ‘Side’, ‘Side’, ‘Side’.
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Notice that this congruence test tells us that the three angles of a triangle are completely 

determined by its three sides. After trigonometry has been introduced, the cosine rule can 

be used to find the sizes of these angles.

EXERCISE 1

The second dotpoint in the box above does not imply that given any three lengths, a 

triangle can be constructed with those lengths as side lengths. What restriction must be 

placed on the three side lengths in order for a triangle with those side lengths to exist?

The example below shows that a quadrilateral with opposite sides equal is a parallelogram. 

Many results of this type will be discussed in the module, Parallelograms and Rectangles.

EXAMPLE

In the diagram to the right, the opposite sides of the quadrilateral  

ABCD are equal, and the diagonal BD has been drawn.

a	 Prove that ABD  CDB. 

b	 Prove that AB || DC and AD || BC.

SOLUTION

a	 In the triangles ABD and CDB:

1	 AD = CB	 (given)

2	 AB = CD	 (given)

3	 BD = DB	 (common)

	  so	 ABD  CDB	(SSS).

b	 Hence ABD = CDB (matching angles of congruent triangles)

so		  AB || DC	 (alternate angles are equal)

and	 ADB = CBD (matching angles of congruent triangles)

so		  AD || BC	 (alternate angles are equal).

Using congruence to prove the validity of constructions

We claimed in the module, Constructions that the validity of the ruler-and-compasses 

constructions described there could be established once congruence had been 

introduced. The following exercises proves that two of the constructions work.

A

B C

D
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EXERCISE 2

This exercise proves the validity of the standard 

construction to bisect a given angle.

The diagram to the right shows an angle AOB . 

A circle with centre O cuts the arms at X and Y, and circles 

with centres X and Y and the same radius meet at M . 

Use the SSS congruence test to prove that OM bisects AOB .

EXERCISE 3

This exercise proves the validity of the standard construction to copy a given angle.

The diagram below shows a given angle XOY , and an interval PZ. A circle with centre O 

is drawn cutting the arms at A and B, and a second circle with the same radius is drawn 

with centre P cutting PZ at F . A circle with centre F and radius AB is drawn, cutting the 

second circle at G. Use congruence to prove that ZPW has the same size as XOY.

B

X

Y

O A

G

Z
P F

W

The SAS congruence test

The three triangles on page 6 showed that when only two sides of a triangle are specified, 

there is nothing to stop those two sides ‘flapping about’. The other way to stop the two 

sides flapping is to specify the angle between them. This angle between the sides is called 

the included angle. The included angle can be any angle between 0° and 180°.

Constructing a triangle given two sides and the included angle

To illustrate this, let us construct a triangle ABC in which 

	 AB = 4cm	 BC = 6cm	 B = 30°	 (This is the included angle.)

Draw lines BA and BA'

A

B C

A

4cm

4cm

30°

30°

6cm

B

M

X

YO

A
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The two triangles ABC and ABC are congruent, because triangle ABC falls exactly on 

triangle A'BC when it is reflected in the line BC. 

This establishes that it is reasonable to take the SAS congruence test as an axiom  

of geometry.

The SAS congruence test

•	 If two sides and an include angle of one triangle are respectively equal to two sides 

and the included angle of another triangle, then the triangles are congruent.

•	 If we are given the lengths of two sides of a triangle and the size of the included angle, 

then only one such triangle can be constructed (up to congruence). 

The initials SAS stand for ‘Side’, ‘Angle’, ‘Side’.

The included angle can be any angle strictly between 0° and 180°. This congruence test 

tells us that the sides and angles of a triangle are completely determined by any two of 

its sides and the angle included between them. The cosine rule can be used to find the 

length of the third side and the sizes other two angles.

EXAMPLE

This example demonstrates a method of constructing a parallelogram from the diameters 

of two concentric circles.

A

BP

O

Q

					   

The intervals AOB and POQ are diameters of two concentric circles with centre O.

a	 Prove that AOP  BOQ and hence prove AP || QB.

b	 Prove that POB  QOA and hence prove PB || AQ. Conclude that APBQ is a  

parallelogram.
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SOLUTION

a 	 In the triangles AOP and BOQ:

	 AO = BO	 (radii) 

	 PO = QO	 (radii)

	 AOP = BOQ	 (vertically opposite angles)

	 so AOP  BOQ	 (SAS).

 	 Hence PAB = QBA	 (matching angles of congruent triangles)

	 so	 AP || QB		  (alternate angles are equal).

b	 Similarly QAB = PBA	 (matching angles of congruent triangles) 

	 so	 AQ || PB		  (alternate angles are equal).

	 Hence APBQ is a parallelogram.	

Proving the validity of the construction of the perpendicular bisector of an interval

The following exercise uses the SSS and SAS congruence tests to prove the validity of the 

standard ruler-and-compasses construction of the perpendicular bisector of a given interval.

EXERCISE	 4

The circles in the diagram below have centres A and B and the same radius.

a	 Prove that APQ  BPQ. 

b	 Hence prove that APM  BPM. 

c	 Hence prove that PQ is the perpendicular bisector of AB.

A
B

P

M

Q
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The circumcentre of a triangle

The following exercise proves that the three perpendicular 

bisectors of the sides of a triangle are concurrent.  

It also shows that this point is equidistant from all  

three vertices, so it is the centre of the circle passing 

through all three vertices of the triangle.

The circle is called the cirumcircle and its centre is called its circumcentre.

EXERCISE 5

In the diagram to the right, the points P, Q and R are the midpoints of the sides BC, CA 

and AB of a triangle ABC. The perpendicular bisectors of the two sides BC and CA of 

ABC have been constructed, meeting at O , and RO has been joined.

a	 Prove that BOP  COP and COQ  AOQ. 

b	� Hence show that a circle with centre O passes through

the  vertices of the triangle. 

c	 Show also that RO is the perpendicular bisector of AB.

 	 Part b proves that O is the circumcentre of the triangle.

	 Part c proves that the perpendicular bisectors are concurrent.

Demonstrating that the angle in the SAS test must be the included angle

The SAS congruence test requires that the angle be included. The following exercises 

demonstrate that the test would fail if we allowed non-included angles.

EXAMPLE

Use ruler and compasses to construct two non-congruent triangles ABC with

	 BC = 6 cm	 AC = 4 cm	 B = 30°	 (This is a non-included angle)

SOLUTION

	

B

C

6cm

30°

A A

B P

A

O

C

QR



EXERCISE 6

The triangle ABC to the right is isosceles, with 

	 AB = AC	  	 and 	 B = C. 

The point X is any point on the side BC. 

Assuming (wrongly) that the SAS test can be applied               

B C

A

X
when the angles are non-included, prove that

	 AXB  AXC, which is clearly false.

The AAS congruence test

Now let us turn attention to the angles of a triangle. If two angles of a triangle are known, 

then the third angle is also known, because all three add to 180°. But knowing all three 

angles of a triangle does not determine the triangle up to congruence. To demonstrate 

this, suppose that we were asked to construct a triangle ABC in which

	 C = 45°	 and	 B = 35°	

It now follows that A = 100°. 

B C
35° 45°

100°

A

B C
35° 45°

100°

A

Clearly nothing controls the size of the resulting triangle ABC. Thus knowing that two 

triangles have the same angle sizes is not enough information to establish congruence.

In the module, Similarity we will see that the two triangles are similar.

Constructing a triangle with two angles and a given side 

When the angles of a triangle and one side are known, however, there is no longer any 

freedom for the size to change, so that only one such triangle can be constructed (up 

to congruence). To demonstrate this, suppose that we are asked to construct a triangle 

ABC with these angles and sides length:

	 B = 35°	 C = 45°	 BC = 13cm	 (It follows that A = 100°.) 
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The most straightforward way is to draw the interval BC and then construct the angles at 

the endpoints B and C. A

B C

A

35° 45°

35° 45°
13cm

These two triangles ABC and ABC are congruent, because when the diagram is reflected 

in the line BC, the interval BA falls on the interval BA and the interval CA falls on the 

interval CA. A further two congruent triangles can be formed by reflecting in a line 

through C perpendicular to BC.

This establishes that it is reasonable to take the AAS congruence test as an axiom  

of geometry.

The AAS congruence test

•	 If two angles and one side of a triangle are respectively equal to two angles and the 

matching side of another triangle, then the two triangles are congruent.

•	 If we are given the angles sizes of a triangle and the length of a specific side, then only 

one such triangle can be constructed (up to congruence).

The initials AAS stand for 'Angle', 'Angle', 'Side'.

Notice that this congruence test tells us that the other two sides of a triangle are 

completely determined by one side and two angles. The sine rule can be used  

to find the other two side lengths.

EXAMPLE

Show that O is the midpoint of both AQ and BP in the diagram below .

SOLUTION

In the triangles AOB and QOP 

A = Q (alternate angles , AB ||PQ)

B = P (alternate angles , AB || PQ)

AB = QP (given)

	 so	 AOB  QOP	 (AAS)

Hence AO = QO and BO = PO	 (matching sides of congruent triangles)

That is, O is the midpoint of both AQ and BP.

This example shows that the diagonals of a parallelogram bisect each other.

A

B

O

P

Q
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EXERCISE 7

This exercise proves that if one diagonal of a quadrilateral 

bisects both vertex angles, then the quadrilateral is a kite.

In the diagram to the right, prove that

	  AB = AD	 and	 CB = CD.

(This is the definition of a kite)

The RHS congruence test

We have seen that two sides and a non-included angle are, in general, not enough to 

determine a triangle up to congruence. When the non-included angle is a right angle, 

however, we do obtain a valid test. In this situation, one of the two specified sides lies 

opposite the right angle, and so is the hypotenuse.

The test is therefore given the initials RHS for ‘Right angle’, ‘Hypotenuse, ‘Side’.

RHS congruence test

The hypotenuse and one side of one right-angled triangle are respectively equal to the 

hypotenuse and one other side of another right-angled triangle then the two triangles are 

congruent. If we are given the length of the hypotenuse and one other side of a right-

angled triangle, then only one such triangle can be constructed (up to congruence).

The initials RHS stand for ‘Right angle’, ‘Hypotenuse’, ‘Side’

This congruence test tells us that the other two angles and the third side of a right-angled 

triangle are completely determined by the hypotenuse and one other side.

Simple trigonometry will later determine the angles sizes, and the third side can be found 

by Pythagoras’ theorem. Indeed Pythagoras’ theorem allows us to prove this test is valid 

very quickly, using the SSS test holds.

Proving the RHS congruence test:

A

BC

R

QP

	 In the triangles above, B = R = 90° and AC = PQ and AB = PR.

A

B

C

D
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	 Using Pythagoras’ theorem,

	 BC2 = AC2 – AB2 = PQ2 – PR2 = QR2 

	 so BC = QR. Hence the two triangles have three pairs of equal sides, and so are 		

	 congruent by the SSS congruence test.

Constructing a right-angled triangle given the hypotenuse and one side

Suppose that we are asked to construct a right-angled triangle ABC with these 

specifications:

A = 90°	 BC = 13cm	 AB =12cm 

1	 Draw an interval AB of length 12 cm.

2	 Draw a line through A perpendicular to AB. 

3	� Draw a circle with centre B and radius 13cm, 

cutting the perpendicular line at C and C .

4	 Join up the triangles ABC and ABC.

	 These two triangles ABC and ABC are 

	 congruent by the RHS test.

	 Reflection in the line AB takes the line CAC and 

	 the circle onto themselves.

EXERCISE 8

This exercise shows that the altitude to the base 

of an isosceles triangle bisects the apex angle.

a	 Prove that ABN  ACN. 

b	 Hence show that AN bisects A.

The incentre of a triangle

The following exercise proves that the three angle bisectors of a triangle are concurrent. 

It also shows that this point has the same perpendicular distance from each side of the 

triangle. By some later results concerning circles and their tangents, it is the centre of a 

circle tangent to all three sides of the triangle.

The circle is called the incircle and the point is called the incentre.

A B

C

C

13cm

12cm

A

B N C
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EXERCISE 9

In the diagram to the right, the angle bisectors of A and 

B meet at I , and the interval IC is joined. 

Perpendiculars are drawn from I to the three sides. 

a	 Prove that IAQ  IAR and IBR  IBP . 

b	 Hence show that IP = IQ = IR. 

c	 Hence show that the interval IC bisects C .

Part b shows that I is the centre of the circle which touches all three sides.

Part c shows that the three angle bisectors are concurrent.

A further test for congruence – Extension

We have seen that there is no ‘ASS test’, meaning ‘two pairs of equal sides and a pair of 

matching non-included angles’, but that when the non-included angle is a right angle, 

there is a valid test. The following exercise shows that there is also a valid test when 

the non-included angle is an obtuse angle – this test, however, is not part of standard 

geometry courses in school.

A C

B

D P R

Q

S

EXERCISE 10

The diagram above shows triangles ABC and PQR with 

	 A = P =  > 90°		  and		  AB = PQ	 and	 BC = QR 

Construct the perpendiculars BD from B to CA produced, and QS from Q to RP produced. 

a	 Prove that ABD  PQS. 

b	  Hence prove that BDC  QSR. 

c 	 Hence prove that ABC  PQR.

d	 Why is this proof not valid when A and P are acute? (Draw diagrams)

A

R

B

C

P

I

Q




 
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ISOSCELES AND EQUILATERAL TRIANGLES

Congruence is needed in the theory of isosceles and equilateral triangles. 

ISOSCELES AND EQUILATERAL TRIANGLES

•	 An isosceles triangle is a triangle with two (or more) sides equal.

-- The equal sides are called the legs and the third side is called the base.

-- The legs meet at the apex and the other two angles are the base angles.

•	 An equilateral triangle is a triangle with all three sides equal.

The word 'isosceles' comes from Greek and means 'equal legs'.  

The word 'equilateral' comes from Latin and means 'equal sides'.

	
A

B C

legs

apex

base

base 
angles

	

				  

	 An isosceles triangle	 An equilateral triangle

The base angles of an isosceles triangle are equal

Congruence allows us to give a formal proof of this result. We have set out the full proof 

below in a manner appropriate for Years 7–8 students learning how to proceed from a 

theorem stated in general terms to its proof using a particular diagram.

Theorem:	

The base angles of an isosceles triangles are equal.

Proof:	

   Let ABC be isosceles, with AB = AC.

   We prove that B = C.

   Let AM be the bisector of A

   In the triangles ABM and ACM:	

			   AB = AC	 (given)

			   AM = AM	 (common)

			   BAM = CAM 	 (construction)

A

B M C
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	 so ABM = ACM	 (SAS).

	 Hence B = C	 (matching angles of congruent triangles).

EXERCISE 11

Explain how else could the interval AM have been constructed in the previous proof? 

How would this have changed the proof?

A test for a triangle to be isosceles 

The converse of the previous result is also true, and gives a test for a triangle  

to be isosceles.

EXERCISE 12

M is a point on BC

a	 Let AM be the angle bisector of A. Prove that AB = AC.

b	 Assuming only that AM is an altitude, can you prove that AB = AC?

c	 Assuming only that M is the midpoint of BC, can you prove 

	 that AB = AC?

EXERCISE 13

The Greek mathematician Pappus (Alexandria, early 4th century AD) took an interesting 

approach to these results, by noting that the triangle is congruent to itself in a different 

orientation.

a	� If ABC is isosceles with AB = AC, explain why ABC  ACB, and hence prove that 

B = C .

b	� Conversely, if ABC has B = C, explain why ABC  ACB, and hence prove that 

AB = AC.

Equilateral triangles

An equilateral triangle is a triangle with three equal sides.

An equilateral triangle is an isosceles triangle in all its six orientations, so by the theorem 

on the base angles of an isosceles triangle, all its angles are equal. Since the sum of its 

angles is 180°, each angle is 60°.

Conversely, if all the angles of a triangle are equal, then by the converse theorem, all its 

sides are equal, and it is therefore equilateral.

A

B C
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Isosceles triangles

•	 The base angles of an isosceles triangle are equal.

•	 Conversely, if two angles of a triangle are equal, then the sides opposite those angles 

are equal. (That is, the triangle is isosceles.)

Equilateral triangles

•	 The interior angles of an equilateral triangle are all 60°.

•	 Conversely if all the angles of a triangle are equal, then the triangle is equilateral.

EXERCISE 14

There are many correct answers to both of the following questions.

a	� It is clearly false to claim that any two equilateral triangles are congruent. Complete 	

the sentence, ‘Two equilateral triangles are congruent if …’

b 	 Complete the sentence, ‘Two isosceles triangles are congruent if …’

An alternative construction of a right angle at the endpoint of an interval.

To construct a right angle at the endpoint A of an interval AB:

•	 Draw a circle with centre A and any radius, cutting AB at X.

•	 With centre X and the same radius, draw an arc cutting 

the line at Y.

•	 Join XY and produce the line more than twice as far.

•	 With centre Y and the same radius, draw an arc cutting 

the line at Z.

Then AZ  AB. A BX

Y

Z

EXERCISE 15

Prove that this construction works.

LINKS FORWARD

The congruence tests allow the theory of special triangles and quadrilaterals to be 

developed. In particular, some of the proofs of the constructions can be understood 

as consequences of the properties of kites. The four similarity tests are developed as 

generalisations of the four congruence tests. Similarity and congruence are widely used in 

circle geometry.
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As we have discussed, each congruence tests can also be regarded as a set of 

specifications for constructing a triangle up to congruence. Trigonometry is needed to 

calculate the missing lengths and angles in such a specification.

SAS test: The cosine rule allows the side to be calculated. If the sides b and c and the size 

of A and are known in ABC , then the side a can be found using the formula

	 a2 = b2 + c2 – 2bc cos A.

SSS test: The cosine rule allows each angle to be calculated. If the three sides of 

ABC are known, then A can be found by solving the formula above for cos A.

AAS test: The sine rule allows the other two sides to be calculated. If the three angles and 

the side a of ABC are known, then the sides b and c can be found using the formula

	 a
sin A  = b

sin B  = c
sin C

RHS test: Simple trigonometry and Pythagoras’ theorem are sufficient for calculations in a 

right-angled triangle.

The sine rule in reverse may be ambiguous, because, for example,  = 30° and  = 150° 

are both solutions of sin  = 1
2 . This corresponds to the fact that there is no ‘ASS test’ – 

two sides and a non-included angle – unless the given angle is a right angle (or obtuse as 

shown in an extension exercise.)

Congruence can also be applied to figures with curves, but in such figures congruent 

triangles may be insufficient and some direct appeal to transformations may be required. 

The following is a very simple example of such a situation.

EXAMPLE

Prove that two arcs of a circle are equal if and only if they subtend the same angle  

at the centre.

SOLUTION

In the diagram to the right, suppose first that the arcs  

AB and PQ have equal length. Then rotating the circle 

about its centre until OA lies on OP will transform 

B to Q, so AOB = POQ.

Conversely, suppose that AOB = POQ. Then again, 

rotating the circle about its centre until OA lies on OP 

will transform B to Q, so the arcs AB and PQ have equal length.

A

B

P

Q

O
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HISTORY AND APPLICATIONS

Euclid wrote his mathematics book, called the Elements, in Alexandria around 300 

BC. It starts and finishes with geometry, but along the way deals with such things as 

quadratic equations, ratio and proportions, and prime numbers, all treated with a distinctly 

geometric flavour. The book is distinguished by its impressive rigour, and by its systematic 

arrangement of its material into a logical sequence of definitions and theorems, based 

on carefully formulated axioms that are taken as its initial assumptions. This approach 

became the paradigm for the organisation and the logical rigour of modern mathematics, 

and also inspired similar attempts to organise the structure of other disciplines, particularly 

parts of philosophy and theology. Euclid’s book also became the most famous textbook in 

mathematics, and was still being used as the standard text for school geometry well into 

the 20th century.

Congruence is an essential part of the early logical foundation of Euclid’s geometry, and 

remains so in our present school courses. Euclid only states three congruence tests – our 

SSS, SAS and AAS tests – to which we now find it convenient to add the RHS test. The 

notes in this module proved the RHS test in terms of the other tests, but we took Euclid’s 

three tests as axioms of geometry. We merely demonstrated the reasonableness of these 

axioms by showing how to construct triangles specified by side lengths and angle sizes 

corresponding to the tests.

The concept of ‘moving one triangle to fit exactly on top of the other’ is not regarded 

nowadays by mathematicians as a satisfactory starting point for congruence, but it is 

perfectly satisfactory for school geometry. Euclid’s development of the congruence tests 

uses this idea very cleverly, and his actual text could well be used as extension in Years 

9–10 – it was, after all, the standard school geometry textbook not so long ago. A very clear 

web presentation of Euclid’s Elements can be found at http://aleph0.clarku.edu/~djoyce/

java/elements/toc.html where a complete translation of the text is accompanied by 

extremely clear diagrams, cross- referencing, and an excellent explanatory commentary. 

The congruence tests are proven in Propositions 4, 8 and 26 of Book 1.

Euclid’s work is interesting for second reason – it uses geometry as a means of dealing 

with arithmetic and algebra. Contrast this with Descartes’ idea of the coordinate plane, 

introduced in the early 17th century, which interpreted points as pairs of numbers and 

lines and curves as equations, and showed how Euclid’s geometrical results could be 

obtained using algebra and arithmetic. Geometry and arithmetic can both be used as 

bases for mathematics.

Vector geometry was developed in the 19th century from Cartesian and Euclidean 

geometry, and became the usual way to study phenomena like electro-magnetism that 

require a combination of calculus and geometry. Modern mathematics and modern 

physics routinely move between algebraic-arithmetic ideas and geometric ideas, using at 

any point whichever approach gives a significant intuition about the situation or provides 

the clearest proof. Modern mathematics and physics are as inconceivable without 

geometry as they are without algebra. 
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ANSWERS TO EXERCISES

EXERCISE 1

Each side length must be lesser than the sum of the other two side lengths

EXERCISE 2

In the triangles OMX and OMY:

1. OX = OY (radii of the same circle)

2. XM = YM (radii of circles of equal radii)

3. OM = OM (common)

so OMX  OMY (SSS)

Hence MOX = MOY (matching angles of congruent triangles).

EXERCISE 3

By the SSS congruence test, OAB and PFG are congruent isosceles triangles.

Hence AOB = FPG  (matching angles of congruent triangles).

EXERCISE 4

a 	 Use the SSS congruence test.

b	  Hence APM = BPM, so APM  BPM by the SAS congruence test.

c 	 These now follow from part b.

EXERCISE 5

a	 Use the SAS congruence test.

b	 Using matching sides of congruent triangles, AO = BO = CO.

c	 By the SSS congruence test, AOR  BOR.

	 Hence	 ARO	 = BRO (matching angles of congruent triangles):

	 But	 ARO + BRO	 = 180° (straight angle).

	 Hence	 ARN	 = BRN = 90°.
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EXERCISE 6

In the triangles AXB and AXC:

	 1.	  AX	 = AX	 (common)

	 2.	  AB	 = AC	 (given)

	 3.	 B	 = C	 (given)

so		  AXB	  AXC	 (SAS)

This argument is invalid because the angles are not included.

EXERCISE 7

Use the AAS congruence test.

EXERCISE 8

a	 Use the RHS congruence test.

b	 Use matching angles of congruent triangles.

EXERCISE 9

a	 Use the SAS congruence test.

b	 Use matching sides of congruent triangles.

c	 From part b, ICP  ICQ by the RHS congruence test, from which the bisection 

follows.

EXERCISE 10

a	 Use the AAS congruence test.

b	 Hence BD = QS, so use the RHS congruence test.

c	 Hence C = R, so use the AAS congruence test.

d	 When A is acute, the constructed point D lies inside the interval AC if C is acute, 

and outside if C is obtuse, and similarly for the constructed point S. Thus there may be 

two possible non-congruent triangles.
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EXERCISE 11

a	 We could have let M be the midpoint of BC and joined AM. This would require the SSS 

congruence test.

b	 We could have let AM be the altitude to BC from A. This would require the RHS 

congruence test.

EXERCISE 12

a	 Construct the angle bisector of A, meeting BC at M, and use the AAS test.

b	 Construct the altitude from A, meeting BC at M, and use the AAS test.

c	 The interval joining A to the midpoint of BC will not help, because it involves the non-

included angle situation.

EXERCISE 13

a	 Use the SSS or the SAS congruence test, then use matching sides.

b	 Use the AAS congruence test, then use matching angles.

EXERCISE 14

a	 The most obvious answers are ‘…if they have the same side lengths’, or ‘…if they have 

the same perpendicular height’, or ‘…if they have the same area’.

b	 Some obvious answers are ‘…if they have the same side lengths’, or ‘…if they have the 

same base and perpendicular height’, or ‘…if they have the same base and base angles’, or 

‘…if they have the same base angles and leg length, or ‘…if they have the same area and 

base’.

EXERCISE 15

AXY is equilateral', because its sides are radii of circles of equal radii, 

so 	 AYZ	 =  120°	 (exterior angle of AXY),

so	 ZAY	 =  AZY  =  30°	 (angle sum of isosceles AYZ).

Hence	  ZAB	 =  90°  	 (adjacent angles).

[Alternatively, ZAX is an angle in the semicircle with diameter XYZ, but this requires some 

circle geometry.]
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